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It is proven that the total energy of interacting molecular systems A and B at large intermolecular 
distances R can be expanded in a semi-convergent series in powers of 1/R. It is further proven that  
"exchange forces" vanish faster than  any power of 1/R. 
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1. Introduction 

It appears to be generally accepted that the intermolecular force series (1~R- 
expansion) of the interaction energy between two molecules A and B 

AE(R)=EAB(R)--(EA +EB)= ~ EvR -~ (1) 
v=O 

is a semiconvergent series [1]. This means that the following-relationships hold 
although the series occurring in (1) may diverge for all R 

lim R N AE(R)- ~ E,R -~ =0 (2) 
R~oe v=0 d 

or, equivalently 

N 

AE(R)= EvR-v+O(R-N-1)- (3) 
v=0 

In this context one often refers to a paper of Brooks [2], who did not give a 
rigorous proof for the semiconvergence of the 1/R-expansion, however. In his 
considerations, Brooks has tacitly assumed that the exact wavefunction may be 
expanded in powers of 1/R (otherwise the quantity E}(R) defined in Eq.(21) of 
Ref. [-2] is not a power series in 1/R) and has explicitly assumed that the exact 
wavefunction for the supersystem AB vanishes exponentially in the region of the 
configuration space where the multipole expansion of the interaction potential 
diverges. Besides these two assumptions, which will essentially be justified in this 
paper, Brooks has disregarded the antisymmetry of the exact wavefunction and 
Eq.(23) of Ref. [2] is not correct in general as .will be shown in the appendix. 

A rigorous proof for the semiconvergence of (1) has so far only been given 
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by Coulson [3] for the polarization expansion of the H~ system. The proof of 
Coulson is based on the explicit form of the eigenfunctions of the hydrogen atom 
and consequently cannot be generalized to n-electron atoms (n > 1) or to molecules 
where the exact wavefunctions are not known. 

An instructive discussion of the semiconvergence of the 1/R-expansion has 
been given by Dalgarno and Lynn [4] for the second order long range force of the 
H~ system. 

In the present work we give a rigorous proof for the semiconvergence of the 
1/R-expansion for the interaction energy AE(R) in the Born-Oppenheimer ap- 
proximation and neglecting relativistic effects. The proof consists essentially of 
two steps. We first consider the 1/R-expansion of the interaction potential and 
show that the perturbation corrections to the wavefunction (in the Rayleigh- 
Schr6dinger perturbation expansion with 1/R as perturbation parameter) vanish 
faster than qF" for arbitrary n, where qi is an arbitrary Cartesian coordinate of an 
electron from A or B. It is then almost trivial to show that the 1/R-expansion for 
the wavefunction and energy are asymptotic or semiconvergent approximations 
to the exact quantities. 

We further show that the so called "exchange terms" vanish faster than any 
power of 1/R. 

2. Properties of the 1/R-Expansion 

We consider the interaction between two molecules A and B. Let us denote 
the nuclear charges, nuclear and electronic coordinates of A by Z,,  R,, ri, and 
the corresponding quantities of system B by Z~, S~, s k. The vectors are defined with 
respect to the centers of A and B - the definition of which is, of course, arbitrary - 
which are separated by R, where R = I R[. We then decompose the total Hamiltonian 
H in the usual way. 

H = H o + V (4) 

Ho = H A + H B  (5) 

-* + 2 
�9 i < j  

(6) 

V : - Z  Z=IR=--R--sk[ - 1 -  Z z ,  le+s~-r~[ -~ + Zlr ,-e-sk1-1 
k , a  i , f l  i , k  

fl k <i  

(8) 

The multipole expansion of V will be written in the form [5] 

V'= ~ R -~ Q~(r, s) (9) 
v - - 1  

where the Qv are homogenous polynomials of degree (v-1). The expansion (9) 
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converges uniformly if 

for arbitrary 

If we define 

we can write 

]r~] ~< M 

IRof<M 
M 

IS I< M 

(lO) 

N 

V} = ~ R-"  Q, (12) 
v = l  

V= V} + O(R -N- 1) (13) 

in any region of configuration space for which (10) and (11) hold. 
We now consider the Rayleigh-Schr6dinger perturbation expansion (with t/R 

as perturbation parameter) for the eigenfunction and eigenvalue of the Hamil- 
tonian H '  

ct3 

H ' = H o +  Z R-~ Q, (14) 
v = l  

(H'-E'W'=0 (15) 

E' = ~  E~,R -~" (16) 
v 

O' =~, R-  ~k~ (17) 
v 

where 0~ and E~ are obtained from the equations of Rayleigh-Schr6dinger per- 
turbation theory 

(Ho -Eo)0~ = (Qu-E.)O~-# (18) 
/ t = 0  

with the zero order equations 

g'o = ~bA" ~R (19) 

Eo = E A + E s (20) 

(H A --EA)0A =0 (21a) 

(H E -- EB)~B =0 (21b) 

It should be noted that Ho and H'  commute with permutations of electrons within 
system A or B, but not with permutations which interchange electrons from A 
and B. 

M<R/2 (11) 
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We further point out that  the subsequent considerations remain valid for the 
treatment of  interacting identical systems (A = B) if the systems are in different 
states 0A and 0k. In such a resonance case we have to replace 0o as given in Eq.(19) 
by 

00 = 0A0~ 4- 0~0A (19a) 

which does not affect our conclusions, however. 
As the perturbat ion operators  Qv are not bounded with respect to Ho, compare  

the discussion of  the  Stark effect in [6], we have to show first that 0v and Ev exist 
at all in the sense of  Hilbert  space theory. The problem here is that the r.h.s, of  
Eq.(18) might not be well defined in Hilbert space. In order to exclude this possi- 
bility we have to show that  Q~0, is square integrable for arbitrary v and kt. 

For  this purpose we prove the following theorem. 
Let qk denote an arbi trary Cartesian coordinate of  an electron in system A or 

B. (x, y, z component  of  rl or Sk) I f  the Hilbert  space v e c t o r f ~  is in the domain 
of q~, for all n > 0 

II qffll < oo, 

it follows that the solution q) of  

(H0 - Eo)CP = f  

is also in the domain of q~ 

n = 1, 2, 3 .... (22) 

(23) 

]lq~r <oo ,  n = l ,  2, 3 .... (24) 

provided Eo is an isolated eigenvalue of H o. 
Proof .  The solution q~ of  (23) is determined only up to an arbitrary solution 

of the homogeneous equation 

(Ho -Eo)cPo = 0  (25) 

Since the bound state eigenfunctions of  H A and H B decay exponentially [-7-9], it 
follows that  any solution (p o of(25) (which is a finite dimensional linear combinat ion 
of products of  eigenfunctions of  H A and HR) vanishes also exponentially. This 
holds only if E 0 is an isolated eigenvalue of  Ho, i.e. is not a point in the continuous 
spectrum. I f  Po denotes the projection operator  onto the linear space of solutions 
of  (25), Eq.(23) may then be written as 

1 - P o  
(1 - Po)r - Ho  _ Eo f (26) 

Let us assume for the moment  that we are allowed to use the formal commuta t ion  
rule 

2 • 1 [q~, Ho] = - [q~, �89 = --�89 -- 1)q~,- + n ~ - q ~ -  (27) 
Cqk 
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From (23) - compare also (26) we then get an explicit representation of  q~,~o 

1 - P 0  8 
(1 - Po)q~tp - Ho - E~' [qff- �89 - 1)q~- 2~o + n--sq k q~- lcp] (28) 

Since E 0 is by assumption on isolated eigenvalue of H o, the operators (H o - Eo)-  1 
8 

(1 - P o )  and (H o - E o ) - 1 ( 1  - P o )  8qqk are bounded operators (note that ~Sqk is H 0 

bounded [10]). This means that the r.h.s, of  (28) is well defined for n = 1 and the 
above theorem follows from a simple recurrence procedure. 

The justification for the use of the commutation rule (27) is identical to the 
one given by Combes [10] for the consideration of the eigenvalue equation of 
Schr6dinger operators and need not be repeated here. q.e.d. 

Let us now return to the perturbation equation (18). As the unperturbed 
wavefunction vanishes exponentially [7-9] and the Q~ are polynomials of degree 
(v - 1) in the qk, it follows immediately from the theorem just proven that 

IIq~(01ll < ~ ,  n = 1, 2, 3,... (29) 

and further, by recurrence 

IIq~,~0~ll<oo, v = l ,  2 .... , n = l , 2  .... (30) 

This establishes that the O~ and, hence, the E~ exist and are well defined in the 
sense of Hilbert space theory. 

The remaining considerations are now quite simple and need not be justified in 
great detail. Since ~ and E~ are solutions of the perturbation equations (18), the 
partial sums 

N 

0;, = Z R-~0~ (31) 
v=0 

N 

z ; , =  ~ R-~E~ (32) 
v : 0  

solve the Schr6dinger equation (15) up to the order (N +  1) 

II (Ho + V~ - E~)O~ II = O(R-N- 1) (33) 

where V~ is defined in Eq.(12). Due to the asymptotic behaviour (30) of 0~ and, 
hence, 0h we furthermore have from Eq.(13) 

II ( v -  v;~)O;71t = O(R -N-  1) (34) 

If we combine (33) and (34) we finally get 

I [ ( n -  E;34'~ II = O(R -N-  1) (35) 

This establishes, by means of  the Weinstein criterion [11], that E~ approximates 
an exact eigenvalue of  H up to O(R -N- 1). The analogous statement for ~9~ holds 
only if there is no other eigenvalue of H with the same 1/R-expansion. 0k is in 
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general only an approximation (correct up to terms O(R -N- 1)) to a linear combi- 
nation of all those eigenfunctions of H which correspond to eigenvalues which 
have the same 1/R-expansion E} as found for 0k- 

3. Antisymmetry and Exchange Contributions 

In dealing with electronic systems we are only interested in totally anti-sym- 
metric wavefunctions. The wavefunctions obtained from a perturbation expansion 
with V or V' as perturbation, Eqs.(8, 9), are antisymmetric only with respect to a 
permutation of electrons within A or B but not with respect to an interchange 
between A and B. If n A and n B denote the number of electrons in A and B we can 

�9 . . / /  n A  -]-/,/B \ . dlstnbutr the n A+ n B electrons in | J dxfferent ways on the subsystems A 

and B, and consequently obtain the \ same n u m b e r n A  / of perturbed wavefunctions 
These functions may be written as PABSt, where PAB denotes the operator cor- 
responding to a permutation which interchanges electrons from A and B. Since 
PAB commutes with the total Hamiltonian H, it follows immediately from Eq.(35) 
that 

II ( H -  E~)PAB~/'~I[ = II (H-- E~)~,kl[ = O(R -N-  1) (36) 

which furthermore yields for any linear combination of the PAB~'k 

II ( H -  E~) ~ C(PAB)PAB~/~I[ = O(R -N- 1) (37) 

The set of functions PAB~b~ is linearly independent and it is in fact an easy matter 
to conclude the following relationship from the asymptotic properties (30) 

lim Rm(~b~lPaB~bk> : 0, m>0,  (38) 
R---~ oo 

for arbitrarily large m. 
In the case that Ca and r have spin (SA, SB) different from zero, we further- 

more have (2SA+ 1)(2SB+ 1) linearly independent functions (arising from the 
corresponding zeroth order functions) which fulfill Eq.(35) with the same E~. 

We.thus have a total of(nA+n~nB ) (2SA + 1)(2S,+ 1)wavefunctions which span a 

representation of the permutation group. One may then construct the linear 
combinations which transform as the ith row of the irreducible representation F 
of the permutation group with spin quantum numbers S, ms, by using the cor- 
responding projection operators (9(F, i, S, ms). In analogy to (37) all these func- 
tions fulfill the following equation independent of F, i, S, m s 

II(H- E~)(9(F, i, S, ms)~b;v]l = O(R -N- 1) (39) 

We note that among the irreducible representations F of the permutation group 
which may occur here we certainly have the totally antisymmetric representation, 
but we also have other irreducible representations which are not admissible for 
a system of electrons. 

If ~b(S, ms) denotes the exact electronic eigenfunction it furthermore follows 
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from Eq.(39) by means of the Weinstein criterion (F a denotes the totally anti- 
symmetric representation of the permutation group) 

IIq'(S, ms)-(_9(F,, S, ms)q&ll = o(e -N-l) (40) 

This results from the fact that - except for accidental degeneracy, which need not 
concern us here, and except for degenerate representations of the space group, 
which are easily dealt with - the irreducible representation specified by F, and S 
occurs only once. 

Eqs.(39) and (40) simply mean that exchange effects do not contribute to 
the 1/R expansion and must vanish faster than any power of  1/R. We further 
note that the above discussion of exchange effects holds also if V itself is used as a 
perturbation instead of its multipole expansion V'. 

4. Concluding Remarks 

We have obtained the 1/R-expansion for the energy and the wavefunction in 
using the multipole expansion (12) even in those regions of configuration space 
where it diverges. This obviously indicates that the 1/R-expansion cannot converge 
(i.e. it has convergence radius zero), and the corresponding expansions for the 
energy and wavefunction are semiconvergent only. For the sake of completeness 
we may also give a direct proof of the divergence of the expansion (1) for the 
energy. Consider, as a simple example, the lowest singlet (1Zg+) and triplet state 
(3Z~+) of the H 2 molecule. Let us assume that (1) converges for R >  R o. Since the 
energies for the 1Zg+ and 3Z~+ states of H 2 have identical l/R-expansion, as was 
proven at the end of the preceding section, this implies that the energies for the 
two states would be identical for R > Ro. This is certainly not the case which proves 
that our assumption about the convergence of the 1/R-expansion leads to a 
contradiction. The energy difference between the two states vanishes faster than 
any power of 1/R, however, as follows from Eq.(39). 

It has been shown by Claverie [12] that the Rayleigh-Schr6dinger expansion 
with V as a perturbation does usually not converge (if it converges at all) towards 
a totally antisymmetric state if one starts from the electronic ground states of 
A and B. It has then been suggested by Claverie that using V or its 1/R-expansion 
as a perturbation might still be a reasonable procedure to compute long range 
forces if the interaction energies for the two states (the one to which the pertur- 
bation expansion converges and the electronic state one is interested in) differ 
by a function with sufficiently fast decrease. The considerations reported in this 
work give in fact a rigorous justification for this suggestion of Claverie. 

Our treatment disproves the conjecture of Musher and Amos [13] that 
exchange terms are as important as the Coulombic terms (1/R-expansion) for 
all R and that the sum of exchange terms "is, in all probability, infinite". For this 
reason we cannot support the criticism of Musher and Amos with respect to the 
treatment of exchange forces by Herring and Flicker [-14]. 

We finally note that the methods used in this study are easily extended to the 
treatment of three or more interacting systems. One has then to use the multipolar 
expansion of the interaction potential in terms of the intermolecular distances 
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RAB , RBC, RAc etc., in order to prove that the interaction energy can be expanded 
in a semiconvergent series in R2~, R~c 1 and RAc 1. 

Acknowledgement. The author  is indebted to Prof. Kutzelnigg for numerous  valuable and en- 
couraging discussions. This work was supported by the "Fonds  der Chemischen Industrie".  

A p p e n d i x  

We want to comment  briefly on Eq.(23) of  Brooks'  paper [2] 

(~1 v -  V ~ l ~ ) = O ( R  -N-~) (A1) 

where ~ denotes the exact wavefunetion of the complex AB, V the interaction potential as defined in 
Eq.(8) and V~ the 1/R-expansion of  Vup to terms in R-N, see Eq.(12). Brooks'  reasoning was essentially 
that (A1) is correct if integrated only over the region of configuration space where Eq.(9), converges 
and that  the remaining volume integral gives exponentially decreasing contributions. 

Due  to the ant isymmetry of ~, Eq.(A1) cannot  be correct. This is most  easily verified if we consider 
the H 2 system as a simple example. If we associate in the unper turbed s y s t e m -  electron 1 with 
nucleus a and electron 2 with b, we obtain for V, in an obvious notat ion 

1 1 1 1 
V F - -  + -- (A2) 

ra2 rbi ra2 R 

We may now replace the exact wavefunction 4~ by the Heit ler-London function 45HL (in its spinless 
form) which approximates ~ up to terms in R -  3. 

(but = [q~(1)cpb(2) + cpb(1)rp.(2)] [2 + 2S 2] ~ (A3) 

s = <~~ (A4) 

We then get immediately 

= - <~o, 1 % ) ( 1  + S 2) - 1 + O(exp( -2R) )  (15) <%L] VI~HL) 

Since V) starts with a term in R -3, we conclude that (A1) is not  correct in general. 
In the present treatment we have circumvented this kind of  difficulty in using an equation like 

(A1) only for a wavefunction which was not  antisymmetric,  see Eq.(34). The antisymmetrizat ion does 
not  matter  if we use the full Hamil tonian H, compare Eqs.(35-37), which has the full permutat ional  
invariance, whereas H 0 and V have not. 

Note Added in Proof. After completion of this study a paper of  R. H. Young,  Intern. J. Quan tum Chem. 
9, 47 (1975), came to our attention, where the divergence of  the 1/R expansion is proven for the second 
order interaction energy (not the total interaction energy as in this work) between two hydrogen 
atoms. Young 's  comments  on the paper of  Brooks [2] are in part  similar to those given in the intro- 
duction of  this work. The present author  is indebted to Dr. Laurinc for bringing Young 's  paper to his 
attention. 
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